
averdtw.dll Introduction

General
averdtw.dll calculates an average signal from several varying, time dependent signals, using a dynamic
time warping procedure.
Simplified description: k signals are first time-normalized and then time-distorted (warped) so that the
summed squared errors between all of them become a minimum. All distorted signals are treated
statistically, obtaining different output signals: arithmetic mean, median, minimum, maximum, 25
percentiles, 75 percentiles.
For details see:

Bender A., Bergmann G., Determination of Typical Patterns from Strongly Varying Signals, Comput
Methods Biomech Biomed Engin. 2011 Jul 4. [Epub ahead of print]

Data Structure
Example: The signal Ak(i, j) consists of 4 sub-signals: The resultant force F and its components Fx, Fy, Fz
in directions x, y, z. It is measured 5 times. Each of the p = 5 measurements is 1 second long and consists
of 1001 data sets.

Each measurement k = 1 … p (p = 5) is stored in a 2-dimensional, null-terminated array Ak(i, j) with the
indizes
i = 0 … m = 0 …4 = time, F, Fx, Fy, Fz = sub-signals
j = 0 … n = 0 … 1000 = data sets 1 … 1001 = data sets in each measurement

The time can be measured using any time base (e.g. milliseconds, hours …). It must start with zero. The
time intervals don’t have to be equidistant. The number m of sub-signals is not limited but must be the
same for each measurement. The number n of data sets can be different for each measurement.

Example:
i →

1

j ↓

Ak(i, j) = k = number of measurement

time (ms) F (N) Fx (N) Fy (N) Fz(N)
0 3.74 1.00 2.00 3.00
1.040 10.77 4.00 6.00 8.00
1.095 21.95 7.00 12.00 17.00
3.093 32.31 12.00 18.00 24.00

1000 3.74 1.00 2.00 3.00

Input for the dll:
Arrays Ak(i,j) from p different measurements.
Output for the dll:
Array Aout(i,j) with average (median/min etc) signal, having the same data structure as A(i,j).

Sub-signal used for warping
Warping is done with one of the sub-signals i. All other sub-signals are then distorted identically before the
average/ median etc. signals are calculated. That signal i must be taken for warping which is most
representative for all sub-signals. In case of a spatial force this is the resultant force F.

Introduction_GB.doc 20.09.2011

http://www.ncbi.nlm.nih.gov/pubmed?term=Determination%20of%20Typical%20Patterns%20from%20Strongly%20%20Varying%20Signals
http://www.ncbi.nlm.nih.gov/pubmed?term=Determination%20of%20Typical%20Patterns%20from%20Strongly%20%20Varying%20Signals

System Requirements

DLL Type averdtw.dll
 + Windows XP
 + DLL registration:

averdtw.dll must be registered on your computer. Either you can do this in the MS-DOS
command prompt or by pressing “start/execute…”. You need the dll path for registration.

 registration command: regsvr32 "path\averdtw.dll"
 deregistration command: regsvr32 /u "path\averdtw.dll"
 with "path" being the averdtw.dll path.
 Example: path = "C:\average_dtw"
 command for the registration: regsvr32 "C:\average_dtw\averdtw.dll"
 command for the deregistration: regsvr32 /u "C:\average_dtw\averdtw.dll"

DLL Type averdtw8.dll
 + Windows XP with .NET 2.0, Vista, Windows 7

Calculation Parameters
The following parameters can be chosen:

DTWComp - number i of that sub-signal which is used for calculation of dynamic time warping path
(interger). Standard value DTWComp = 1

NumOfIntervals - number j of data sets in the average signal (integer). Standard value = 600

WinConstraint - windows constraint for dynamic time warping matrix in percent (integer).
Standard value = 20 (details see Bender and Bergmann 2011).

Filter
all sub-signals i in the outpot signal Aout(i, j) can be smoothed by a single pole low-pass filter.

The filtered output array Asmooth[i, j] is

 Asmooth[i, 0] = Aout[i, 0]

 Asmooth[i, j] = smoothing factor)/100 * Asmooth[i, j - 1] + (100 - smoothing factor)/100 * Aout[i, j -1]
 Recursive with j = 1 to n and smoothing factors between 0 and 100.

 SmoothAver - smoothing factor for the average signal
 SmoothMedian - smoothing factor for median signal
 Smooth25Perc - smoothing factor for 25 percentile signal
 Smooth75Perc - smoothing factor for 75 percentile signal
 SmoothMax - smoothing factor for maximum signal
 SmoothMin - smoothing factor for minimum signal

2 Introduction_GB.doc 20.09.2011

DLL functions
StartNewCalc() - preparation for new calculation of average signal
AddOneSignal(dblNewSignal()) - add new signal k
CalculateDTWAver(dblAverSignal()) - start calculations
AverDTW() - array with average signal
MedianDtw() - array with median signal
MinDtw() - array with min values signal
MaxDtw() - array with max values signal
Perc25Dtw() - array with 25 percentile signal
Perc75Dtw() - array with 75 percentile signal
Comment - comment to evaluation progress
CalcReady - true = all signals are calculated
AverDtwError - = 0 - ok; <> - error in the calculating process

3 Introduction_GB.doc 20.09.2011

